COURSE: ENGINEERING MATHEMATICS-I CODE: 25SC11T

MODEL QUESTION PAPER-1

Instructions:

- 1. The question paper has five parts namely A, B, C and D. Answer all the parts.
- 2. Part A has 15 Multiple Choice Questions, and 5 Fill in the blanks of 1 mark each
- 3. Part A should be answered continuously at one or two pages of Answer sheets and only first answer is considered for the marks in subsection I and II of Part A.

PART- A

I) Choose the appropriate answer for the following questions each question carries one mark. $15 \times 1 = 15$

curries one	mur.		13^1-13		
1. The order of the square matrix is					
a. 2X2	b. 3X3	c. 4X4	d. All		
2. The matrix 2	$\begin{bmatrix} 4 & -1 \\ 3 & 5 \end{bmatrix}$ is				
a. $\begin{bmatrix} 4 & 2 \\ 6 & 10 \end{bmatrix}$	b. $\begin{bmatrix} 8 & -2 \\ 6 & 10 \end{bmatrix}$	c. $\begin{bmatrix} 8 & 2 \\ 6 & 10 \end{bmatrix}$	d. $\begin{bmatrix} 4 & -2 \\ 6 & 10 \end{bmatrix}$		
3. The value of t	he 'x' if $\begin{vmatrix} 2 & 3 \\ 4 & x \end{vmatrix} = 0$				
a. 6	b. 4	c. 3	d. 1		
4. The magnitud	le of the vector $\vec{a} = 4i$	+2j + k is			
a. $\sqrt{21}$	b. $\sqrt{20}$	c. $\sqrt{27}$	d. $\sqrt{22}$		
5. The unit vector	or along the given vect	or is determined by			
a. $\frac{\vec{a}}{ \vec{a} }$	b. $\frac{\vec{a}}{ 2\vec{a} }$	$\text{C.} \frac{-\vec{a}}{ \vec{a} }$	d. $\overrightarrow{a} \times \overrightarrow{a} $		
6. The dot produ	act of two vectors is ze	ero when two vectors a	are		
a. Equal	b. Unit vectors	c. Parallel	d. Perpendicular		
vectors		vectors	vectors		
	7. The radian measure of the angle 30^{0} is				
a. $\frac{\pi}{4}$	b. $\frac{\pi}{8}$	C. $\frac{\pi}{5}$	d. $\frac{\pi}{6}$		
	8. The degree measure of the angle $\left(\frac{\pi}{4}\right)^C$				
a. 30 ⁰	b. 120°	c. 45 ⁰	d. 60 ⁰		
9. sin2A=					
a. sin2Acos2A	b. 2sinA	c. 2cosA	d. 2sinAcosA		
10. The modulus	of the complex number	er z=4+3i is			
a. 4	b. 3	c. 5	d. 6		
11. The complex	conjugate of the comp	lex number z=5-2i is			

a. 5 + i	b. $5i - 2$	c. $5 + 2i$	d. $2i - 5$	
12. The exponent	tial form of complex n	umber z=1+√3i is		
a. $2e^{\frac{i\pi}{4}}$	b. $3e^{\frac{i\pi}{4}}$	c. $2e^{\frac{i\pi}{6}}$	d. $2e^{\frac{i\pi}{6}}$	
13. The value of t	the $\lim_{x\to 2} \frac{x^3 - 2^3}{x - 2}$ is			
a. 2	b. 3	c. 5	d. 6	
14. The value of the $\lim_{x\to 0} \frac{\sin 4\theta}{\theta}$ is				
a. 1	b. 3	c. 4	d. 2	
15. The value of the $\lim_{x\to 0} \frac{e^{\theta}-1}{\theta}$ is				
a. 1	b. 2	c. 0	d. 3	

II) Fill in the blanks with suitable answer provided in the brackets.

5×1=5

$$(2, -2, 30, \sqrt{2}, 5)$$

- 1. The value of the determinant of the matrix $\begin{bmatrix} 4 & 5 \\ 2 & 3 \end{bmatrix}$ is ______
- 2. The dot product of the vectors $\vec{a} = i + 2j + k$ and $\vec{a} = 4i 2j 2k$
- 3. The argument of the complex number $z = \sqrt{3} + i$ is _____
- 4. The value of $cosec(45^0)$ is _____
- 5. The limiting value of $\lim_{x\to 2} \frac{x^2+x-6}{x-2}$ is_____

PART-B

III. Answer any FIVE questions, each question carries 2 marks.

 $5\times2=10$

1. If
$$A = \begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 6 \\ 1 & 3 \end{bmatrix}$, find the matrix $3A + 2B$.

- 2. If $A = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$ then find $A + A^T$ matrix.
- 3. If $\overrightarrow{OA} = 2i 3j$ and $\overrightarrow{OB} = 8i + 5j$ then find \overrightarrow{AB} .
- 4. If $\vec{a} = i + 2j k$, $\vec{b} = 3i 5j + 2k$ find the magnitude of $3\vec{a} 2\vec{b}$.
- 5. Find the value of $\sin 300^{\circ}$
- 6. Find the value of $\sin 15^{\circ}$
- 7. Find the modulus and amplitude of 1-i.
- 8. Evaluate $\lim_{\theta \to 0} \left[\frac{\theta}{\tan 5\theta} \right]$

PART-C

IV Answer any FIVE questions each question carries 3 marks

 $5 \times 3 = 15$

- 1. If $A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix}$ find AB matrix.
- 2. If $\vec{a} = i + 2j + k$ and $\vec{b} = 2i + 4j k$ then find $|2\vec{b} 3\vec{a}|$
- 3. Prove that $tan(45^0 + A) = \frac{1 + tan A}{1 tan A}$
- 4. Prove that sin2A = 2sinAcosA
- 5. Express (1+2i)(3+i) in a+ib form
- 6. Find the modulus and amplitude of $1 + \sqrt{3}i$
- 7. Evaluate $\lim_{\theta \to 0} \left[\frac{\theta}{\tan 5\theta} \right]$ 8. Evaluate $\lim_{x \to 2} \frac{x^2 9x + 14}{x^2 4}$

PART-D (SECTION I)

Answer any FIVE questions. Each question carries 5 marks.

 $5 \times 5 = 25$

- 1. Find A^2 if $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- 2. Find A^{-1} if $A = \begin{bmatrix} 5 & 5 \\ 1 & 2 \end{bmatrix}$
- 3. If A = (3, -4, 2), B = (-6, 8, 4) then find the position vectors of A and B. Also find \overrightarrow{AB} and $|\overrightarrow{AB}|$.
- 4. If the vectors $\lambda i + 5j 6k$ and 7i + 2j + 4k are orthogonal find λ .
- 5. A tower casts a shadow 20 meters long when the angle of elevation of the sun is 60° . Find the height of the tower.
- 6. Find the value of $sin120^{\circ}cos330^{\circ} sin240^{\circ}cos390^{\circ}$
- 7. Express $\frac{(2-i)}{(1-i)(3+i)}$ in a+ib form
- 8. Evaluate $\lim_{x\to 0} \left(\frac{\sqrt{1+x}-\sqrt{1-x}}{x}\right)$

PART-D (SECTION II)

VII Answer any THREE EACH question carries 10 marks

 $3 \times 10 = 30$

- 1. Find characteristic equation and characteristic roots of the matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.
- 2. A particle is acted by constant forces 3i j + 2k, -i + 3j + k, i + j 2k and is displaced from the point (-1,2,3) to (2,-1,5). Calculate the total work done by the forces.

- 3. Prove that $sin3A = 3sinA 4sin^3A$
- 4. Draw the argand diagram for the complex number $\frac{1+i}{1-i}$
- 5. Evaluate $\lim_{x\to 2} \left[\frac{x^2-4}{\sqrt{x+2}-\sqrt{3x+2}} \right]$.

COURSE: ENGINEERING MATHEMATICS-1

9. $\cos(A+B) =$

a. cosA cosB + sinA sinB

MODEL QUESTION PAPER-2

CODE: 25SC11T

Instructions:

- 1. The question paper has five parts namely A, B, C and D. Answer all the parts.
- 2. Part A has 15 Multiple Choice Questions, and 5 Fill in the blanks of 1 mark each.
- 3. Part A should be answered continuously at one or two pages of Answer sheets and only first answer is considered for the marks in subsection I and II of Part A.

	only first answer i	s considered jo	r the mar	KS III SUDSEC	uon i an	a 11 oj Part	A.
			PART	- A			
I)	Choose the app one mark.	ropriate answ	er for th	e following	questio	_	estion carries 15×1=15
1.	If A is a matrix of or	der <i>mXn</i> the it	s transpo	ose A^T is a m	atrix of	order	
	a. <i>mXm</i>	b. <i>nXm</i>	(c. m n		d. <i>nXn</i>	
2.	Let A be a square m characteristic equat		dentity n	natrix and λ	be the d	any consta	nt, then the
	a. $A + I = 0$	b. $ A - \lambda I =$	= 0	$ A + \lambda I =$	= 0	d. $ A - \lambda $	I = 1
3.	If A be the square m			-		dj(A) =	
	a. <i>A.I</i>	b. <i>A</i> . <i>I</i>	(c. <i>I</i>	d. 0		
4.	Unit vector is a vect	or whose magr	nitude is				
	a. 1	b. 0	(c. i	d. Nor	ne of these	2
5.	If two vectors \vec{a} an				, →		
	a. $\vec{a} + \vec{b} = 0$	b. $\vec{a} \cdot \vec{b} = 1$	($\vec{a} X b = 0$	$d. \vec{a}. \vec{b}$	= 0	
6.	If \vec{F} be the force and	$d\vec{S}$ be the displ	acement	vector then	work do	ne is	
	a. $\vec{F} \times \vec{S}$						
7.	The value of $210^0 =$	= in rad	lians				
	a. 3.66	b. 180	c. 2.66	d. 0.6	56		
8.	The value of tan (60	$(00)^{0} = _{00}$					
	a. $\sqrt{3}$	b. $\frac{1}{\sqrt{3}}$	c. $-\sqrt{3}$	d. 3			

b. cosA cosB . sinA sinB

c. cosA cosB - sinA sinB

d. cosA sinB - sinA cosB

- 10. The value of $i^{10} =$ _____
 - a. -1
- b. (

- c. 1
- d. 10
- 11. The conjugate of complex number -x + iy is
 - a. x iy
- b. -x iy
- c. x + iy
- d. -x-y
- 12. If $z_1 = 1 + i$ and $z_2 = 1 i$ then $z_1 \cdot z_1 =$ ____
 - a. 2
- b. -2
- c. (
- d. 1

- 13. The value of $\lim_{x\to 0} \left(\frac{\sin 2x}{x}\right)$ is
 - a. $\frac{1}{2}$

b. 2

- c. 0
- d. 1

- 14. The value of $\lim_{x\to 2} \left(\frac{x-2}{x+1}\right)$ is
 - b. 0
- b. $\frac{1}{3}$

- c. 3
- d. 1

- 15. The value of $\lim_{\theta \to 0} \left(\frac{\theta}{tan\theta} \right)$ is
 - a. *θ*
- b. 1

- c. 0
- d. 2

II) Fill in the blanks by choosing appropriate answer given in the bracket:

5×1=5

$$(4i - j, -1, Non-singular, 17, cos\theta)$$

- 1. Inverse of a square matrix exists only for _____ matrix.
- 2. Addition of two vectors 3i + j 2k and i 2j + 2k is _____
- 3. The value of $sin(90^{0} \theta) =$ _____
- 4. The modulus of the complex number z=15-8i is _____
- 5. The limiting value of $\lim_{x\to 1} (5x 6)$ is_____

PART-B

III. Answer any FIVE questions, each question carries 2 marks.

 $5 \times 2 = 10$

- 1. If $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 10 & 11 \\ 0 & 2 \end{bmatrix}$, then find the matrix A^T and B^T .
- 2. If $A = \begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix}$ then find the matrix A^2 .
- 3. If $\vec{a} = 3i 5j + 2k$ then find $|\vec{a}|$.
- 4. If $\vec{a} = i j + 3k$ and $\vec{b} = 2i + j k$ find the magnitude of $\vec{a} + \vec{b}$.
- 5. Evaluate *cos* 120⁰

- 6. Convert $\frac{11 \pi}{5}$ into degrees.
- 7. Find the value of $i^4 i^{10}$.
- 8. Evaluate $\lim_{\theta \to 0} \left(\frac{\sin 3\theta}{\theta} \right)$

PART-C

IV. Answer any FIVE questions each question carries 3 marks

5×3=15

- 1. If $A = \begin{bmatrix} 4 & 1 \\ 5 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}$ find the matrix 3A + 2B.
- 2. If $\vec{a} = i 2j$ and $\vec{b} = 3i + j$ then find $|2\vec{a} + 3\vec{b}|$.
- 3. Using the formula sin(A + B) find the value of $sin(75^0)$.
- 4. Prove that $cos2A = cos^2A sin^2A$
- 5. Express (1-i)(3+2i) in a+ib form
- 6. Find the amplitude of $\sqrt{3} + i$.
- 7. Evaluate $\lim_{\theta \to 0} \left[\frac{\tan^2 2\theta}{\theta^2} \right]$
- 8. Evaluate $\lim_{x\to 3} \left(\frac{x-3}{x^2-9}\right)$

PART-D (SECTION I)

V Answer any FIVE, each question carries 5 marks

 $5 \times 5 = 25$

- 1. If $A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix}$ find AB matrix.
- 2. Solve the equations 4x + 7y = 9 and 3x + 5y = 6 by using Cramer's rule.
- 3. Find the cosine of angle between the vectors $\vec{a} = 3i + j + 4k$ and $\vec{b} = 5i 10j + 2k$.
- 4. If the vectors $\lambda i + 5j 6k$ and 7i + 2j + 4k are orthogonal find λ .
- 5. Find the value of $sin120^{\circ}cos330^{\circ} sin240^{\circ}cos390^{\circ}$
- 6. Simplify $\frac{\sin{(180^{\circ}-A)}}{\cos{(90^{\circ}-A)}} + \frac{\tan{(180^{\circ}+A)}}{\cot{(270^{\circ}-A)}}$
- 7. Express the complex number 1 + i in polar form.
- 8. Evaluate $\lim_{x\to 2} \left(\frac{x^2+3x-10}{x-2}\right)$

PART-D (SECTION II)

VI Answer any THREE EACH question carries 10 marks

 $3 \times 10 = 30$

- 1. Find characteristic equation and characteristic roots of the matrix $A = \begin{bmatrix} 4 & 2 \\ 3 & 5 \end{bmatrix}$.
- 2. Find the work done by a force $\vec{F} = 4i + 7j k$ in moving a particle from the point (3,5,9) to (5,4,2).
- 3. Prove that $\cos 3A = 4\cos^3 A 3\cos A$
- 4. Express the complex number $1 i\sqrt{3}$ in exponential form.
- 5. Evaluate $\lim_{x \to 1} \left[\frac{2x^2 x 1}{x^2 + 2x 3} \right]$.

COURSE: ENGINEERING MATHEMATICS-1

MODEL QUESTION PAPER-3

CODE: 25SC11T

Instructions:

1. The question paper has five parts namely A, B, C and D. Answer all the parts.

- 2. Part A has 15 Multiple Choice Questions, and 5 Fill in the blanks of 1 mark each.
- 3. Part A should be answered continuously at one or two pages of Answer sheets and only first answer is considered for the marks in subsection I and II of Part A.

		PAR	Г- А	
I)	Select the correc	ct answer from the c	hoices given.	15×1=15
1.	The value of x if the a. 2	e matrix $\begin{bmatrix} 4 & x \\ 2 & 1 \end{bmatrix}$ is sind b. -2		d. $-\frac{1}{2}$
2.	The cofactor of 3 in		2	u. – ½
2	a. 1	b2	c. 2 —1 ₁ .	d. 5
3.	The determinant val a. −13	b. 7	5 ∫ 1S c. −7	d. 13
4.	The magnitude of the a. $\sqrt{7}$	e vector $\vec{a} = 3i + 4j$ b. 7	is c. √5	d. 5
5.	If the vectors $3i + 2i$ a. 2	4	k are orthogonal the c. -2	en the value of λ is d. $-\frac{1}{2}$
6.	If $\vec{a} = i + 2j$, $\vec{b} = 2i$ a. $3i + 3j$	$\ddot{a} - j \ \ddot{a} + \vec{b}$ is b. $2i - 2j$	c. 3 <i>i</i> + <i>j</i>	d. $3i - j$
7.	The conversion of 1 a. $\frac{3\pi}{4}$		re is c. $\frac{3\pi}{2}$	d. None of these
8.	The value of sin (330		. 1	$\sqrt{3}$

9. The value of
$$\frac{2 \tan 15}{1-\tan^2 15}$$
 is

a.
$$\sqrt{3}$$

b.
$$\frac{1}{\sqrt{3}}$$

d. None of these

10. Real part of the complex number
$$z = 2 - 3i$$
 is

d. None of these

11. The conjugate of complex number
$$z = 2 + 5i$$
 is

a.
$$5 + 2i$$

b.
$$5 - 2i$$

c.
$$2 - 5i$$

d. None of these

12. If
$$z_1 = 2 - i$$
 and $z_2 = -1 + 2i$ then $z_1 + z_1$ is

a.
$$1 + i$$

b.
$$1 - i$$

c.
$$-2 - 2i$$

d.
$$3 + 3i$$

13. The value of
$$\lim_{\theta \to 0} \left(\frac{\sin 3\theta}{\theta} \right)$$
 is

a.
$$\frac{1}{3}$$

14. The value of
$$\lim_{x \to 2} \left(\frac{x^3 - 8}{x - 2} \right)$$
 is

$$15. \lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = \underline{\qquad}$$

c.
$$-i$$

II) Fill in the blanks with suitable answers provided in brackets: $5 \times 1=5$

$$[m, 1, -1, 0, 7]$$

- 1. Value of the determinant of the matrix $\begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix}$ is _____.
- 2. Magnitude of the vector 2i 6j + 3k is _____.
- 3. The value of $sin^2 15 + cos^2 15$ is _____.
- 4. The value of $i^2 + i^4$ is _____.
- 5. $\lim_{x \to 1} \left(\frac{x^{m-1}}{x-1} \right)$ is_____.

PART-B

III) Answer any FIVE questions, each question carries 2 marks.

 $5 \times 2 = 10$

1. If
$$A = \begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, then find the matrix $A - B$.

2. Find the value of
$$A + A^T$$
 if $A = \begin{bmatrix} 3 & 5 \\ -4 & 8 \end{bmatrix}$.

- 3. Find the unit vector in the direction of \vec{a} if $\vec{a} = 2i 4j + k$.
- 4. Show that the vectors 5i + 4j 2k and 2i 2j + k are perpendicular.

- 5. Prove that $sin 2\theta = 2 sin \theta cos \theta$.
- 6. Evaluate $sin(\pi + \theta) + cos(\frac{3\pi}{2} + \theta)$.
- 7. If $z_1 = 2 + 3i$; $z_2 = 1 2i$ then find $z_1 cdot z_2$
- 8. Find the modulus of the complex number $\sqrt{3} + i$
- 9. Evaluate $\lim_{x \to \infty} \left[\frac{2x^2 3x + 4}{3x^2 + 5x 1} \right]$
- 10. Evaluate $\lim_{\theta \to 0} \left(\frac{\tan 3\theta}{\theta} \right)$

PART-C

IV) Answer any FIVE questions each question carries 3 marks

 $5 \times 3 = 15$

- 1. If $A = \begin{bmatrix} 3 & 2 \\ 1 & -4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$ then find the matrix AB.
- 2. If the vectors 7i + 4j + 5k and $\lambda i + j + 2k$ are orthogonal then find λ .
- 3. Evaluate $sin120^{\circ} + cos150^{\circ}$.
- 4. Convert the angle 150° into radians
- 5. Simplify $i^5 + i^7$
- 6. Express the complex number $z = \frac{3-i}{2+3i}$ in a + ib form.
- 7. Evaluate $\lim_{x \to -2} \left[\frac{x^5 + 32}{x + 2} \right]$ 8. Evaluate $\lim_{x \to 1} \left(\frac{x^2 3x + 2}{x 1} \right)$

PART-D (SECTION I)

V) Answer any FIVE, each question carries 5 marks

 $5 \times 5 = 25$

- 1. Find the inverse of the matrix $A = \begin{bmatrix} 5 & 2 \\ 3 & 4 \end{bmatrix}$.
- 2. Verify that $(A+B)^T = A^T + B^T$ if $A = \begin{bmatrix} 4 & 2 \\ 3 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ -4 & 4 \end{bmatrix}$.
- 3. Find the projection of the vector 3i + 4j 2k on i + j + 2k.
- 4. Find the cosine of the angle between the vectors $\vec{a} = 2i + 3j k$ and $\vec{b} = i + 2j + k$ 2k.
- 5. Write the formula of cos(A + B) and hence find the value of $cos(75^{\circ})$.
- 6. A tower is 20 m high. If the angle of elevation from a point on the ground to the top of tower is 45° then find the distance of point to the base of the tower.
- 7. Find the real and imaginary parts of the complex number z = (3 + 2i)(1 i).
- 8. Evaluate $\lim_{\theta \to 0} \left(\frac{\sin 2\theta}{\tan 3\theta} \right)$

PART-D (SECTION II)

VI) Answer any THREE, each question carries 10 marks

3×10=30

- 1. Find characteristic equation and characteristic roots of the matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & 3 \end{bmatrix}$.
- 2. If a particle is acted by the force $\vec{F} = 2i j + 3k$ is displaced from (1, -1, 3) to (2, 3, 1) then find the work done.
- 3. Prove that $sin3A = 3sinA 4sin^3A$
- 4. Draw the argand diagram for the complex number $z = 1 + \sqrt{3}i$.
- 5. Evaluate $\lim_{x \to 3} \left[\frac{x^2 5x 6}{x^2 + x 12} \right]$.

Course: Engineering Mathematics-II Code: 25SC21I

MODEL QUESTION PAPER-3

Instructions:

- 1. The question paper has five parts namely A, B, C and D. Answer all the parts.
- 2. Part A has 15 Multiple Choice Questions, and 5 Fill in the blanks of 1 mark each
- 3. Part A should be answered continuously at one or two pages of Answer sheets and only first answer is considered for the marks in subsection I and II of Part A.

PART- A

I) Choose the appropriate answer for the following questions each question carries one mark. $15 \times 1 = 15$

carries one i	mark.		15×1=15		
1. The slope of the straight line is:					
a. $\tan \theta$	b . $\sin \theta$	$c.\sec\theta$	$d.\cos\theta$		
2. The line 3x - 4	y + 12 = 0 passes throug	the point			
a. (0,0)	b. (0,3)	c. (3, 0)	d. (3,3)		
3. If the product	of the slopes of two line	s is one, then the lines a	re:		
a. parallel	b. perpendicular	c. neither	d. both a and b		
		parallel nor			
		perpendicular			
4. Which rule is a	used to differentiate $y =$	$e^{\sin \varkappa}$			
a. product rule	b. quotient rule	c. sum rule	d. chain rule		
$5. \text{If } y = e^{3x} + si$					
a. $3e^{3x} + cosx$	b. $2e^{3x} - \cos x$	c. $e^{3x} + \sin x$	d. $3e^{3x} - \sin x$		
6. The derivative	of $sin(x^2)$ is				
a. $-2x\cos(x^2)$	b. $2x \sin(x^2)$	c. $2x \cos(x^2)$	d. $-2x \sin(x^2)$		
7. The slope of the normal to the given curve $y = f(x)$ is					
a. $1/\frac{dy}{dx}$	b. $1/\frac{d^2y}{dx^2}$	c. $1/\frac{d^3y}{dx^3}$	$-1/\frac{dy}{dx}$		
8. The velocity of	f the particle with the m	otion $y = x$ remains			
a. 0	b. 1	c. e ^x	d. <i>e</i> ^{2x}		
9. The acceleration of the particle with the motion $y = f(x)$ remains zero when					
a. Velocity=	b. Velocity= 0	c. Velocity= ∞	d. All		
constant					
10. The integral va	10. The integral value of $\int c dx$, where c is a constant is				
a. cx	b. $c \frac{x^3}{3}$	$C. C\frac{x^4}{4}$	d. $c \frac{x^2}{2}$		
11. The integral va	alue of $\int 2 \sin x dx$ is				

a. −2sinx	b. sinx	c. −2 <i>cosx</i>	d. cosx	
12. The integral va	alue of $\int 2^x dx$ is			
a. $\frac{2^x}{3 \log 2}$	b. $\frac{2^x}{2 \log 2}$	$C. \frac{2^x}{\log 3}$	d. $\frac{2^x}{\log 2}$	
13. The integral va	alue of $\int \sec^2 x \ dx$ is			
a. secx	b. tanx	c. secx	d. cosecx	
14. The area under the curve $y = f(x)$ is evaluated by				
a. $\int_a^b y dx$	b. $\int_a^b y^2 dx$	c. $\int_a^b y^3 dx$	d. $\int_a^b \sqrt{y} dx$	
15. The volume generated by rotating the curve $y = f(x)$ about an axis is evaluated by				
a. $\pi \int_a^b y dx$	b. $\pi \int_a^b y^2 dx$	c. $\pi \int_a^b y^3 dx$	d. $\pi \int_a^b \sqrt{y} dx$	

II) Fill in the blanks with suitable answer provided in the brackets.

5×1=1

$$(3, 0, ax + by + c = 0, 5, indefinite integral)$$

- 1. The equation of line in general form is _____
- 2. The derivative of a y=5x function is ______
- 3. The slope of the normal at (2, 3) point on the curve y = 3x is 2 then slope of the tangent at the same point is _____
- 4. The integral value of $\int_1^1 x \, dx \, is$ _____
- 5. The constant of integration is not added in the evaluation of _____

PART-B

III. Answer any FIVE questions, each question carries 2 marks.

 $5 \times 2 = 10$

- 1. Find the equation of line with y-intercept 2 units and slope 5.
- 2. Find the slope of straight line passing through (4, 5) and (2, 2)
- 3. If $y = x^4 \sin x$ then find $\frac{dy}{dx}$.
- 4. If $y = e^x \log x$ then find $\frac{dy}{dx}$.
- 5. Find the slope to the tangent to the curve $y = x^4 + 2x$ at (1,3).
- 6. Find the velocity equation for the displacement $y = 2x^3$.
- 7. Integrate $\frac{1}{x^3} + \frac{1}{x^2}$ w.r.t. x
- 8. Integrate $e^{3x} + 2x^2$ w.r.t. x
- 9. Integrate $cos2x + 3^x$ w.r.t. x
- 10. Evaluate $\int_0^1 x/2 dx$
- 11. Evaluate $\int_1^2 1/x \ dx$

PART-C

IV Answer any FIVE questions each question carries 3 marks

 $5 \times 3 = 15$

- 1. Find the equation of line joining the points (1, -2) and (2,5).
- 2. Find the equation of line with slope 5 units and y- intercept 3 units.
- 3. If $y = \sin(x^2)$ then find $\frac{dy}{dx}$
- 4. If $y = \frac{\tan x}{1+x}$ then find $\frac{dy}{dx}$
- 5. Find slope of tangent to the curve y = sinx + 2 at x=0
- 6. If the law of motion of a particle is $s = 3t^2 + 2t + 4$, find its velocity after 3 seconds
- 7. Evaluate $\int \sin^3 x \, dx$
- 8. Evaluate $\int (x^2 + x + 3)^2 (2x + 1) dx$.
- 9. Evaluate the integral $\int x^2 \log x \ dx$ using integration by parts.
- 10. Evaluate $\int \frac{1+3x}{x} dx$.
- 11. Evaluate $\int_0^{\frac{\pi}{4}} \cos x \ dx$

PART-D (SECTION I)

VI Answer any THREE EACH question carries 5 marks

 $3 \times 5 = 15$

- 1. Find the slope, x intercept and y intercept for the line x + 8y 3 = 0
- 2. If $y = 2x^3 + e^x + 6$ then find the second derivative of y w.r.t x.
- 3. Find equation of tangent to the curve $y = 3x^2 + 5x 4$ at the point (1,4)
- 4. Integrate $4x^3 + \cos x + e^{2x} + 3 + \frac{1}{x}$ w.r. t. x
- 5. Find the area bounded by the curve $y = 3x^2 + 3$, x-axis and ordinates x = 2 and x = 3

PART-D (SECTION II)

VII Answer any THREE EACH question carries 10 marks

 $3 \times 10 = 30$

- 1. Find the value of k for the lines kx+6y-2=0 and x+3y+1=0 to be parallel. Also find the equation of line passing through (-1, 5) and parallel to the given lines.
- 2. If $y=2e^{3x} + 4e^{-3x}$ then find $\frac{d^2y}{dx^2}at \ x = 0$
- 3. The displacement of a particle S meters moving along a straight line is $s=2t^3-t+4$. Find the velocity and acceleration when a) t=2 secs and b) t=5 secs respectively.
- 4. Evaluate the integral a) $\int x \sin x \ dx$ b) $\int x \sec^2 x \ dx$ using integration by parts.

5. Find the volume of the solid generated by revolving the curve $y^2 = x - 1$ about x -axis and ordinates x=2 and x=4.

Course: Engineering Mathematics-II Code: 25SC21I

MODEL QUESTION PAPER-1

Instructions:

- 1. The question paper has five parts namely A, B, C and D. Answer all the parts.
- 2. Part A has 15 Multiple Choice Questions, and 5 Fill in the blanks of 1 mark each
- 3. Part A should be answered continuously at one or two pages of Answer sheets and only first answer is considered for the marks in subsection I and II of Part A.

PART- A

I) Choose the appropriate answer for the following questions each question carries one mark.

15×1=15

carries one	mark.		15×1=15	
1. The general form of the equation of a straight line is:				
a. $y = mx + c$	$b.$ $ax^2 + bx + c = 0$	c. ax + by + c = 0	b. $y^2 = 4ax$	
2. The slope of the	he line $3x - 4y + 12 = 0$	is:		
a. 3	b3	c. $\frac{3}{4}$	d. $-\frac{3}{4}$	
3. Two lines are	said to be perpendicula	ar if the product of	their slopes is:	
a. 0	b. ∞	c. 1	d1	
4. Which rule is	used to differentiate y	$=e^{\varkappa}x^2$		
a. product rule	b. quotient rule	c. sum rule	d. difference rule	
5. If $y = x^3 + lo$	$g x$ then $\frac{dy}{dx}$ is			
a. $3x^2 + \frac{1}{x^2}$	b. $3x^3 + \frac{1}{x^2}$	c. $3x^2 + \frac{1}{x}$	d. $3x^2 + \frac{1}{x^3}$	
6. The derivative	e of \sqrt{x} is			
a. $\frac{1}{x}$	b. $\frac{1}{\sqrt{x}}$	C. $\frac{1}{2\sqrt{x}}$	d. $\frac{1}{2x}$	
7. The slope of the	he tangent to the given	curve $y = f(x)$ is		
a. $\frac{dy}{dx}$	b. $\frac{d^2y}{dx^2}$	$C. \frac{d^3y}{dx^3}$	$\frac{d^4y}{dx^4}$	
8. The velocity o	of the particle with the i	motion $y = e^x$ remarks		
a. 0	b. 1	c. <i>e</i> ^x	d. <i>e</i> ^{2x}	
9. The accelerati	ion of the particle with	the motion $y = sin$		
a. sinx	bsinx	c. cosx	dcosx	
10. The integral v	alue of $\int \kappa dx$ is			
a. $\frac{x^2}{2}$	b. $\frac{x^3}{3}$	C. $\frac{x^4}{4}$	d. 0	
11. The integral v	value of $\int \sin x dx$ is	,		
asinx	b. sinx	c. –cosx	d. cosx	

12. The integral v	alue of $\int \frac{1}{\sqrt{x}} dx$ is		
a. \sqrt{x}	b. $3\sqrt{x}$	c. $2\sqrt{x}$	d. <i>x</i>
13. The integral v	alue of $\int secx tanx dx$	is	
a. secx	b. tanx	c. secx	d. cosecx
14. The area under the curve $y = f(x)$ is evaluated by			
a. $\int_a^b y dx$	b. $\int_a^b y^2 dx$	c. $\int_a^b y^3 dx$	d. $\int_a^b \sqrt{y} dx$
15. The volume generated by rotating the curve $y = f(x)$ about an axis is			
evaluated by			
a. $\pi \int_a^b y dx$	b. $\pi \int_a^b y^2 dx$	c. $\pi \int_a^b y^3 dx$	d. $\pi \int_a^b \sqrt{y} dx$

II) Fill in the blanks with suitable answer provided in the brackets.

5×1=1

$$(-1/2, 0, \frac{x}{a} + \frac{y}{b} = 1, 2x, definite integral)$$

- 1. The equation of line in intercept form is _____
- 2. The derivative of a constant function is _____
- 3. The slope of the tangent at (1, 2) point on the curve y = 2x is 2 then slope of the normal at the same point is _____
- 4. The integral value of $\int 2 dx$ is _____
- 5. The constant of integration is not added in the evaluation of _____

PART-B

III. Answer any FIVE questions, each question carries 2 marks.

 $5 \times 2 = 10$

- 1. Find the equation of line passing through the point (3, 4) having slope 5.
- 2. Find the slope of straight line whose inclination with x axis is 45° .
- 3. If $y = x^3 \log x$ then find $\frac{dy}{dx}$.
- 4. If $y = x \log x$ then find $\frac{dy}{dx}$.
- 5. Find the slope to the tangent to the curve $y = x^2 + 1$ at (1,3).
- 6. Find the velocity equation for the displacement $y = 3x^2$.
- 7. Integrate $tan2x + 2^x$ w.r.t. x
- 8. Evaluate $\int_0^2 e^x dx$

IV Answer any FIVE questions, each question carries 3 marks

 $5 \times 3 = 15$

1. Find the equation of line joining the points (3, 2) and (-1, 5).

2. If
$$y = \frac{1+x^2}{1-x^2}$$
 then find $\frac{dy}{dx}$.

- 3. Find slope of normal to the curve $y = x^3 x$ at the point (2,3).
- 4. The displacement of a particle in time 't' seconds is given by $s=t^3-6t^2$. Find the velocity after t=3 seconds.
- 5. Evaluate $\int \cos^2 x \, dx$

6. Evaluate
$$\int \frac{2x+1}{x^2+x+1} dx$$

- 7. Evaluate the integral $\int x e^x dx$ using integration by parts.
- 8. Evaluate $\int_{0}^{1} (x+2)(x-5) dx$.

PART-D (SECTION I)

VI Answer any FIVE questions, each question carries 5 marks

 $5 \times 5 = 25$

- 1. Find equation of line parallel to 2x + y 3 = 0 which passes through the point (2,3).
- 2. Find the slope, x intercept and y intercept for the line 2x + 3y 6 = 0.

3. If
$$y = x^3 + \sin x - \log x - \sqrt{x} + 5$$
 then find $\frac{dy}{dx}$.

4. If
$$y = \frac{1 + \sin x}{1 - \sin x}$$
 then find $\frac{dy}{dx}$.

- 5. Find equation of tangent to the curve $y = x^2 + x$ at the point (1,2).
- 6. Integrate $e^x + 2^x \sin x + x^3 + 3$ w.r.t. x.
- 7. Evaluate $\int (x^2 + x + 9)^{10} (2x + 1) dx$
- 8. Find the area bounded by the curve $y = 4x x^2 3$, x-axis and ordinates x = 1 and x = 3.

- 1. Verify whether the line 2x+3y-6=0 is parallel, perpendicular or either to the given lines 3x+6y-10=0, 3x+4y-7=0, 3x-2y-9=0, 5x+10y-7=0 and 8x-4y=0.
- 2. If $y = A \cos mx + B \sin mx$ then find $\frac{d^2y}{dx^2}$.
- 3. The displacement of a particle S meters moving along a straight line is $S = 4t^3 2t^2 + t$. Find the velocity and acceleration when t = 2 secs and t= 3secs respectively.
- 4. Evaluate the integrals i) $\int x \sin x \, dx$ ii) $\int x^2 \log x \, dx$ using integration by parts.
- 5. Find the volume of the solid generated by revolving the curve $y^2 = 3x^2 2x + 1$ about x axis and ordinates x = 0 and x = 2.

Course: Engineering Mathematics-II Code: 25SC21I

MODEL QUESTION PAPER-2

Instructions:

- 1. The question paper has five parts namely A, B, C and D. Answer all the parts.
- 2. Part A has 15 Multiple Choice Questions, and 5 Fill in the blanks of 1 mark each
- 3. Part A should be answered continuously at one or two pages of Answer sheets and only first answer is considered for the marks in subsection I and II of Part A.

PART- A

I) Choose the appropriate answer for the following questions each question carries one mark. $15 \times 1 = 15$

curries one	mur.		13^1-13	
1. The slope-inte	ercept form of the equa	tion of a straight l	ine is:	
a. $y = mx + c$	$b.$ $ax^2 + bx + c = 0$	c. ax + by + c = 0	b. $y^2 = 4ax$	
2. The slope of the	ne line parallel to x-axis	s is:		
a. 1	b. 0	c. ∞	d1	
3. Two lines are	said to be parallel if the	eir slopes are:		
a. 0	b. ∞	c. equal	d1	
4. Which rule is	used to differentiate y	$=\frac{x^2}{\sin x}$		
a. product rule		c. sum rule	d. difference rule	
5. If $y = x^4 + co$				
a. $4x + cosx$	b. $4x^3 - \sin x$	c. $4x^3 + sinx$	d. $x^3 - \sin x$	
6. The derivative of $logx$ is				
a. $\frac{1}{x}$	b. $\frac{1}{\sqrt{x}}$	C. $\frac{1}{2\sqrt{x}}$	d. $\frac{1}{2x}$	
7. The slope of the normal to the given curve $y = 2x + 1$ at $x = 0$ is				
a. 1	b. 2	C. $\frac{1}{2}$	d. $\frac{-1}{2}$	
8. If S is the displacement at any time 't', then velocity is given by				
a. $\frac{dS}{dt}$	b. $\frac{s}{t}$	c. $\frac{d^2S}{dt^2}$	$\frac{dt}{ds}$	
9. The accelerati	on of the particle with	the motion $y = 3x$	x + 2 at any time x is	
a. 2	b. 0	c. 3	d. 5	
10. The integral v	alue of $\int 2 dx$ is			
a. 0	b. 2x	c. 2	d. 2+x	
11. The integral v	alue of $\int \frac{1}{x} dx$ is			

a. $\frac{-1}{x^2}$	b. $\frac{1}{x}$	c. logx	d. <i>x</i>			
12. The integral of	12. The integral of is $\int secx^2 dx$					
	Г -					
a. sinx	b. cosx	csinx	d. tanx			
13. The integral v	alue of∫ <i>sinx cosecx o</i>	dx is				
a. secx	b. x	c. sinx	d. cosecx			
14. $\int_a^b y dx detern$	14. $\int_a^b y dx$ determines					
a. Area	b. Area	c. Volume	d. None of these			
bounded by	bounded by	of solid				
the curve	the curve	of				
and x axis	and y axis	rotation				
15. If $\int_a^b x dx = 0 t$	15. If $\int_a^b x dx = 0$ then					
a. $a = b$	b. $a = 1, b = 0$	c. $a=-b$	d. a=0,b=1			

II) Fill in the blanks with suitable answer provided in the brackets.

 $5\times1=1$

$$(\frac{-1}{m}, \frac{dy}{dx}, ax+by+c=0, x, indefinite integral)$$

- 1. The equation of line general form is _____
- 2. The rate of change of y w.r.t x is _____
- 3. The slope of the tangent at a point on the curve y = f(x) is m then slope of the normal at the same point is _____
- 4. The integral value of $\int 1 dx$ is _____
- 5. The constant of integration is added in the evaluation of _____

PART-B

III. Answer any FIVE questions, each question carries 2 marks.

5×2=10

- 1. Find the equation of line passing through the point (1, -3) having slope 2.
- 2. Find the slope of straight line whose inclination with x axis is 30° .
- 3. If $y = x^2 + tanx$ then find $\frac{dy}{dx}$.
- 4. If $y = xe^x$ then find $\frac{dy}{dx}$.
- 5. Find the slope to the tangent to the curve $y = x^3 + x$ at (0,1).
- 6. Find the velocity equation for the displacement y = sin x + 2
- 7. Integrate $\frac{1}{\sqrt{x}} + \frac{1}{x}$ w.r.t. x
- 8. Integrate cosecx cot x + 1 w.r.t. x
- 9. Integrate $e^x + x^2$ w.r.t. x
- 10. Evaluate $\int_0^2 3 dx$

11. Evaluate $\int_0^1 \frac{1}{\sqrt{x}} dx$

PART-C

IV Answer any FIVE questions each question carries 3 marks

 $5 \times 3 = 15$

- 1. Find the equation of line joining the points (4,2) and (3,-1).
- 2. Find the equation of line with x-intercept 7 units and y- intercept 2 units.
- 3. If $y = \cos(\log x)$ then find $\frac{dy}{dx}$
- 4. If $y = \frac{1+\sin x}{1-\sin x}$ then find $\frac{dy}{dx}$
- 5. Find slope of tangent to the curve $y = x^2 4x + 7$ at the point (2,3)
- 6. If the law of motion of a particle is $s = t^2 4t 5$, find its velocity after 1 seconds
- 7. Evaluate $\int \cos^3 x \, dx$
- 8. Evaluate $\int \sin^2 x \cos x \ dx$
- 9. Evaluate the integral $\int x \log x \ dx$ using integration by parts.
- 10. Evaluate $\int \frac{x^2 + x + 1}{x} dx$.
- 11. Evaluate $\int_0^{\frac{\pi}{4}} \sec^2 x \ dx$

PART-D (SECTION I)

VI Answer any THREE EACH question carries 5 marks

 $3 \times 5 = 15$

- 1. Find the slope, x intercept and y intercept for the line 4x 2y + 5 = 0
- 2. If $y = x^4 + tanx + sec x \sqrt{x} + 1$ then find $\frac{dy}{dx}$
- 3. Find equation of tangent to the curve $y = x^2 + 3x 1$ at the point (1,3)
- 4. Integrate $x^2 + tanx sin x + e^x + 3$ w.r.t.x
- 5. Find the area bounded by the curve $y = x^2 + 1$, x-axis and ordinates x = 1 and x = 2

PART-D (SECTION II)

VII Answer any THREE EACH question carries 10 marks

 $3 \times 10 = 30$

- 1. Find the value of k for the lines kx+3y-2=0 and 2x+5y+1=0 to be i) parallel ii) perpendicular
- 2. If $y=ae^{mx}+be^{-mx}$ then find $\frac{d^2y}{dx^2}at \ x=0$
- 3. The displacement of a particle S meters moving along a straight line is $s=t^3+3t-1$. Find the velocity and acceleration when a) t=1 secs and b) t=3 secs respectively.
- 4. Evaluate the integral a) $\int x \cos x \ dx$ b) $\int xe^x \ dx$ using integration by parts.
- 5. Find the volume of the solid generated by revolving the curve $y^2 = 4x^3 + 1$, about x -axis and ordinates x = 0 and x = 1.